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SECTION 1

INTRODUCTION

Chirality is quite common. It occurs not only in nature but also

in works of art and architecture as well as in manufactured articles

(refs. 1 and 2). In nature we find chirality on a molar scale in, for

example, snails, flowers, and vines, and on a molecular scale in such

substances as grape sugar and fruit sugar. Moreover, chirality is an

operational feature of such manufactured articles as screws, springs,

and golf clubs.

Since chirality begets handedness and handedness begets optical

activity, it is not surprising that the interaction between an electro-

magnetic wave and a collection of randomly oriented chiral objects can

be such as to rotate the plane of polarization of the wave to the right

or to the left depending on the handedness of the objects.

The concept of chirality is not new, nor has it been ignored.

Since the early part of the nineteenth century, it has played an

increasingly important role in chemistry (refs. 3, 4, and 5), optics

(refs. 6 and 7), and elementary particle physics (ref. 8). In 1811

D.F. Arago (ref. 9) discovered that crystals of quartz rotate the plane

of polarization of plane polarized light and hence are optically active.

Shortly thereafter, circa 1815, J.B. Biot (ref. 10) discovered that this

optical activity is not restricted to crystalline solids but appears as

well in other media such as oil of turpentine and aqueous solutions of

tartaric acid. These discoveries led to the fundamental problem of

determining the basic cause of optical activity. In 1848 Louis Pasteur

(ref. 3) solved the problem by postulating that the optical activity of
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a medium is caused by the chirality of its molecules. Thus, Pasteur

introduced geometry into chemistry and originated the branch of chemistry

we now call stereochemistry. More recently, in 1920 and 1922, K.F. Lindman

(refs. 11 and 12) devised a macroscopic (molar) model for the phenomenon

by using microwaves instead of light, and wire spirals instead of chiral

molecules. The validity of the model was verified a few years later by

W.H. Pickering.*

To obtain a better understanding of chirality and assay its future

role in electrical design, we shall examine in the following pages the

interaction between electromagnetic waves and chiral objects. In particular,

we shall study the case of a composite medium consisting of randomly oriented

chiral conductors embedded in a dielectric.

This work constitutes one aspect of the general problem to uncover

and exploit the symmetry properties of the electromagnetic field and of

the structures with which it interacts (ref. 14).

*Pickering, W.H., private communication, experiment performed at

Caltech, 1945.
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SECTION II

TWO CONJECTURES ON CHIRAL OBJECTS

Chirality is a purely geometric notion which refers to the lack of

symmetry of an object. By definition, an object is chiral if it cannot be

brought into congruence with its mirror image by translation and rotation.

An object that is not chiral is said to be achiral. Thus all objects are

either chiral or achiral. Some chiral objects occur naturally in two

versions related to each other as a chiral object and its mirror image.

Objects so related are said to be enantiomorphs of each other.

A chiral object has the property of handedness; it must be either

left-handed or right-handed. If a chiral object is left-(right-) handed,

its enantiomorph is right-(left-) handed. For example, if the chiral

object is a left-(right-) handed helix, its enantiomorph is a right-(left-)

handed helix.

The handedness of helices was made clear by Lindman's and Pickering's

experimental results which showed that a collection of randomly oriented

left-handed helices would rotate the plane of polarization of a linearly

polarized microwave one way but that a collection of randomly oriented

right-handed helices would rotate the plane of polarization the opposite

way.

Assuming that this relation between the handedness of the helices

and the sense of rotation of the microwave is not peculiar only to helices

but is a property of all chiral objects and their enantiomorphs, we are

led to the following conjecture: Any medium composed of randomly oriented
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equivalent (simple-connected) chiral objects will rotate the plane of

polarization one way, say, to the left, while a medium composed of the

enantiomorphs of these objects will rotate the plane of polarization the

opposite way, i.e., to the right.

In figure 1 we see common examples of chiral objects: a helix,

a Mobius strip, an irregular tetrahedron, and a glove. On one side of

the figure is the chiral object and on the other is its enantiomorph.

A type of (multiply-connected) chiral object that has recently

attracted considerable attention is the wire braid. The theory of

braids is a developing branch of topology (refs. 14 and 15) and a study

of how an electromagnetic wave interacts with a braid may help in the

development of the theory.

Examining the forces that are exerted on certain simple chiral

configurations of wire when an electromagnetic wave falls on them, we

conjecture that the forces are such as to reduce the chirality of the

configurations. This is true for the wire helix, for the three-stranded

braid, and appears to be true in general. This tendency of the forces

makes the object more nearly symmetrical.
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C-IRAL OBJECTS AND
THEIR ENANTIOMORPHS

Figure 1. A Sketch Showing Chiral Objects (Left Column) and their

Enantiomorphs (Right Column). From Top to Bottom are

Shown a Helix, a M6bius Strip, an Irregular Tetrahedron,

and a Glove.
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SECTION III

THE SHORT HELIX

To demonstrate the plausibility of the above conjectures, we examine

the scattering of electromagnetic waves from a metallic chiral object. For

computational simplicity, the chiral object is chosen to be an electrically

small perfect conductor having the form of a short right- or left-handed

helix, as shown in figure 2. The calculation is simplified by referring

the incident and scattered waves to the scattering plane defined by the

incident and scattered wave vectors k' = k e' and k = k n respectivelynn
(figure 3). The incident plane wave is composed of the electric field

E' l[a @j + aie16 @,]eikz (1)

and the corresponding magnetic field

B' = ' x E'/c (2)

where c is the free-space speed of light, all, a1 and 6 are real numbers

*with a2 + a2 = 1, and z is the distance along @ '(=@j x @1). The circum-
wta 11  1 n-

flexed quantities are unit vectors, the primes denote quantities asso-

ciated with the incident wave, and the subscripts identify quantities

parallel or perpendicular to the scattering plane. The harmonic time

dependence exp(-iwt) (where w = ck) has been suppressed.

The scattered electric field Esc(e) depends on the observation

angle 0, defined by the relation cosO @ n"n' and on the induced electric

10



THE SHORT HELIX

2b 2b

to- 2a -o- ,- 2a--,

LEFT-HANDED RIGHT-HANDED

Figure 2. Idealized Short Helices Used in Calculations. The Plane
of the Loop is Perpendicular to the Axis of the Straight

Portion of the Wire.
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and magnetic dipole moments p and m. It is apparent (figure 2) that

both dipole moments are directed parallel to the axis of the helix. This

axis lies along the unit vector bd whose orientation angles are x and a

(figure 3).

The incident electric field induces currents in the straight portion

of the chiral object, and by continuity these currents must also flow in the

circular portion of the object. The current in the straight portion

contributes to the electric dipole moment of the object and the current in

the circular portion contributes to its magnetic dipole moment. In a com-

plementary manner, the incident magnetic field induces currents in the

circular portion and by continuity in the straight portion. Thus,

also the magnetic field contributes to the electric and magnetic dipole

moments of the object. In a first-order (Born) approximation we find from

the heuristic argument above that the electric and magnetic dipole moments

of the object are given by

P = E o[Xe (@d'') ± iXemC OdT3%] (3)

m n - c(edB') = n •me(@d')@d (4)

Here, as in the remainder of the report, the upper (lower) sign corresponds

to the right-handed (left-handed) helix of figure 2. The permittivity, the

permeability, and the impedance of free space are denoted by cot Xe a

n(= (Po/IE o-2). The electric and magnetic self-susceptibilities, Xe and Xm,

are the real positive quantities as are the cross-susceptibilities Xem

and xme' Clearly, Xe and Xm are the usual electric and magnetic suscepti-
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bilities associated with electrically small metallic bodies. The cross-

susceptibilities Xem and (me are, in a certain sense, a measure of

chirality or handedness since for archiral bodies Xem = Xme = 0.

Using known approximations, the self-susceptibilities can be written

as

Xe = (21)2 C/E0  (5)

xm = (zra2)2 10/L (6)

where C and L are respectively the capacitance and the inductance of the

body, and 2z and 2a represent the length and the width of the short helix

(figure 2). It can be shown that the cross-susceptibilities are given by

Xem = 2 k) (7)

(ira 2 /fira(k)
)<me = )e(a2k/2 ) (8)

From physical considerations it appears that Xem and Xme are equal and

real, i.e.,
Xem z Xme z Xc  (9)

where xC is their real conmnon value.

It follows from (5) through (9) that the constraint

LC = -2 (10)

is placed upon the inductance and capacitance of the helix and

the comon value xc for the cross-susceptibilities is related to the

inductance and capacitance by
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X c  2 ,(a 2)n/wL = 2,(ia )nw C (11)

From the knowledge of p and m the scattered field can be calculated

by the formula

k2e
ikr

Esc(') 4TrFor [(@n x P) x 0n" en Xm/c] (12)

To gain further insight into the problem, it is useful to find the

constitutive relations of a medium composed of randomly oriented equivalent

chiral objects. These constitutive relations must have the form (ref. 16)

SYe + YemB (13)

M=Yme E + Ym3 (14)

where P and M are respectively the polarization and magnetization of the

medium.

Energy conservation dictates that for a lossless medium

Yme = Yem (15)

where the asterisk denotes complex conjugate. If yme and Yem not only

satisfy (15) but also are purely imaginary quantities, then the consti-

tutive relations (13) and (14) are those of an optically active medium

(ref. 16).
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To find the constitutive parameters for a medium composed of N

short helices per unit volume we compare (3) and (4), averaged over orien-
tation angles a and 8, with (13) and (14). Thus we obtain

Ye= N coXe/4 (16)

m= -N Xm/4 o  (17)

Yem ti N Xem/4n (18)

yme = i N Xme/4n (19)

Since Xem and Xme are real and equal, we see from (18) and (19) that

yme and yem are purely imaginary and satisfy (15). Hence the medium

composed of short helices exhibits optical activity.
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SECTION IV

COLLECTION OF SHORT HELICES

To find the scattered field of a collection of randomly oriented

identical helices we can use one of two approaches. One approach uses

(12) averaged over orientation angles a and 8; the other approach uses

(13) and (14) directly. These two approaches give the same result.

Here we use the former of the two approaches.

Let us suppose that we have a collection of N non-interacting

helices per unit volume occupying a small volume AV. When the incident

wave is circularly polarized, the scattering cross-sections per unit solid

angle 0 are found to be

Ida(W) (k NAV) ±X 2 (1cs)2 (20)
RCP-RCP 102472 w Xe-Am2c

when the incident wave is right circularly polarized (RCP) and only the

right circularly polarized part of the scattered field is considered,

LC-,LCP = 24-2 Ix -xm±2Xc 2 (+cose)2 (21)

daILCP-LCP 10241T

when the incident wave is left circularly polarized (LCP) and only the

left circularly polarized part of the scattered field is considered, and

(MONI =(gdgq PON (k 2NAV) 2  +M 2 (l case) 2  (22)

RCP-LCP LCP-RCP
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when the incident wave is RCP or LCP and the scattered field is LCP or

RCP respectively.

From these expressions we see that for scattering in the forward

direction (0=0) right (left) circular polarization produces a right (left)

circularly polarized scattered field whereas in the backward direction (O=w)

right (left) circular polarization produces a left (right) circularly

polarized scattered field.

Next, we consider a wave normally incident on an electrically thin

slab of width d which contains N randomly oriented helices per unit volume.

Using again the assumption that the helices are non-interacting, we find

from averaging (12) that the transmitted field is given by

[l 1+ ai e"6  
(23)

+ iNkd I[a, (XeXm) T ia1 ei6 2Xc]J

+ i[±a1i 2 Xc - iai e i 6 (Xe-Xm)]i] eikz

and the reflected field by

-'-ref = -dXe +Xm)[r ri +ae i s @ e- i kz  (24)

where the above expressions are correct to the first order in(Nkdx)(here

X stands for Xe, Xm or Xc).

From (23) it can be shown that the plane of polarization is rotated

through the angle 0 where

* tan 0 =  NkdXc/4 (25)
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for waves which pass through the chiral medium. Here * is measured from
e towards ei . Expression (25) is again correct to the first order in (Nkdx).

This equation expresses a general result which holds for any medium composed of

objects characterized by parallel electric and magnetic dipole moments

with non-zero cross-susceptibilities. For the short helices pictured in

figure 2 we can find a lower bound on the capacitance C by the expression

(ref. 17)

C > c0(47)
2/3(3Vh )1/3  (26)

where Vh ( = 2w b2 (Z+a)) is the volume occupied by the short wire helix

and b is the wire radius. This inequality, with the aid of (11) and (25),

yields the following lower bound for the magnitude of the rotation angle:

Jol = Itan o) > 4-1/372/ 3N(kd)(2Z)(ia 2) (3k3Vh) 1/3  (27)

This bound is proportional to the product of the third root of the volume Vh

of the wire helix and the cylindrical volume containing the helix

Ua2
( = 22 ).

From (23) the eccentricity of the transmitted polarization

ellipse differs from that of the incident polarization ellipse by a factor

2of order (NkdX) . Howeverthis transmitted field is correct only to order

(Nkdx). Therefore, the change in the eccentricity of the polarization

ellipse cannot be determined exactly from this model. To the first order

in (NkdX) the eccentricity is unchanged.

The reflected wave (24) to order (Nkdx) shows zero rotation for

the plane of polarization and zero change in the eccentricity for the

polarization ellipse. Therefore, for reflected waves, the slab of chiral

19
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medium behaves as an ordinary dielectric slab. These polarization charac-

teristics are due to the fact that in the backscatter direction, in the

first order, the effects of chirality are not present in the scattered

field (equations (20), (21) and (23)).

From Noether's theorem (ref. 18) it can be shown that the angular

momentum of the electromagnetic field is conserved for a medium described

by equation (13) through (19). This implies that no torque is exerted on

a slab of chiral medium. It is not surprising that there is no torque

since the electrical properties of the slab are invariant under rotations

of the slab about @n. With a knowledge of the state of polarization of

the incident wave, conservation of field angular momentum further implies

that the state of polarization of the reflected wave can be determined

from the state of polarization of the transmitted wave and vice versa.

Some experimental results indicate that there is a change of eccentricity

between the incident and scattered fields due to the chiral medium (refs.

11 and 12).

From the above considerations, the conjecture that a collection

of chiral objects will rotate the plane of polarization becomes plausible.

20



SECTION V

REDUCTION OF CHIRALITY

Assuming that the helix in figure 4 is made of flexible wire, we

can see that the currents that are induced tend to deform the helix. The

current along the circular portion tends to open up the circle and make

a planar figure out of the original helix. Moreover, interaction with

the current along the straight portion of the helix tends to elongate

the planar figure into a straight line. Since planar figures are achiral,

we thus see that the helix evolves into a planar figure and that the

chirality of the configuration is reduced.

Suppose now that we have a flexible helix of many turns, figure 5.

In this case the induced current forces adjacent turns together and at the

same time makes each turn expand into a turn of larqer radius. Thus the

original helix becomes a shortened helix of larger radius. Since the

shortened helix is less chiral than the original helix, we see that here

again the induced currents tend to reduce the chirality of the configuration.

Another type of chiral object is a braid of non-intersecting wires.

Following Artin's theory of braids (ref. 14) we may describe a braid by

projecting it on a plane and expressing the projected pattern as the
-l

product of terms, each of which is ai or i . Here ai denotes that the

strand in position i crosses in front of the strand in position i+ 1 and

a 1 denotes that the latter crosses in front of the former.

Let us consider the three-stranded braid 2lI2 shown in figure 6.

The bus bars L1 and L2 are connected by three flexible wires at the freely

21



REDUCTION OF CHIRALITY (SHORT HELIX)

Figure 4. A Schematic of a Short Helix (Chiral) Evolving into a Straight

Wire (Achiral) under the Influence of Forces Produced by

Induced Currents.
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REDUCTION OF CHIRALITY (LONG HELIX)

Figure 5. Under the Action of Forces Produced by the Induced Currents

a Long Helix (Shown at Left) is Gradually Shortened into

More Closely Spaced Loops of Increased Radius (Shown at

Right).

23
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WIRE BRAID

P1 Pa P3

000~

L2  -
Ql Qj

Figure 6. Bus Bars L, and L2 Connected by Three Strands of the
-1

Braid Defined by a2al 02.
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movable but ordered terminals Pl. P2, P3 and Ql, Q2 1 Q3- Clearly, the

braid and bus bars form a chiral object. An incident wave will induce

current in the braid and bus bars and these currents will deform the

configuration, viz., will make it more nearly planar, and thus reduce

its chirality.
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SECTION VI

CONCLUSIONS

We direct attention to the interaction of electromagnetic fields

with macroscopic chiral objects. By examining the wire helix and the wire

braid as chiral objects, we obtain results which conform to the conjecture

that composite media composed of macroscopic chiral objects are optically

active, and to the conjecture that electrodynamic forces tend to reduce

chiral ity.

These considerations are expected to play a role in the develop-

ment of diagnostic tools for remote sensing, in the design of electro-

magnetic shields and in the prediction of structural deformations.
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